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ABSTRACT

Formulas for the scattering from an inhomogeneous sphere in fluid-saturated porous
medium are used to construct a self-consistent effective medium approximation for the
coefficients in Biot’s equations of poroelasticity when the material constituting the porous
solid frame is not homogeneous on the microscopic scale. The discussion is restricted
to porous materials exhibiting both macroscopic and microscopic isotropy. Brown and
Korringa have previously found the general form of these coefficients. The present results
give explicit estimates of all the coefficients in terms of the moduli of the solid constituents.
The results are also shown to be completely consistent with the well-known results of
Gassmann and of Biot and Willis, as well as those of Brown and Korringa.



I. Introduction

Although Biot’s theory of poroelasticity!~® has been quite successful in explaining labo-
ratory data on man-made porous materials such as sintered packings of glass beads,*~®
the theory has not been as successful at explaining data over a wide range of frequencies
for naturally occurring materials such as porous sandstones® and granites!®.The reason
for this failure of the theory is not well understood at present. However, since there are
several clearly unrealistic assumptions made in the usual application of Biot’s equations
to earth materials, progress on the application of the theory may follow if some of these
assumptions are replaced by more realistic ones.

The issue which will be addressed in the present work is the form of the coefficients in
Biot’s equations when the porous medium is composed not of a single granular material as
is usually assumed but of several species of solid grains or of solid grains mixed together
with clays and cement. The general form of these cnefficients has already been studied

by Brown and Korringa!! and elucidated further by Korringa.!? Their main result may be
expressed as

H—§p=K+UC, (1)
c=o/[Z +¢( ! =) (2)
Ky
M=C/o, (3)
where
o’:l—K/K,. (4)

The constants H, C,and M are coefficients in Biot’s equations whose significance will become
apparent in the next section. The other constants appearing in Eqgs.(1)-(4) are the porosity
¢ and shear modulus u of the porous frame, the bulk modulus of the pore fluid K;, and
three other bulk moduli characteristic of the porous frame:
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where V is the total volume, V, = ¢V is the pore volume, p is the external pressure, p; is the
pore pressure, and ps = p — p; is the differential pressure. Brown and Korringa'! point out
that, although these three bulk moduli have simple physical interpretations, this “does not
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necessarily help in knowing their values.” Actually the constant K is just the dry frame bulk
modulus and has been studied extensively. However, the values of the remaining constants
K, and K4 are not known unless the porous frame is homogeneous on the microscopic scale
in which case K, = K, = K,,, the bulk modulus of the constituent material. One of the
main results of this paper will be formulas which provide estimates of X, and K, in terms

of constituent grain moduli when the porous frame is not microscopically homogeneous.

In Section II, Biot’s equations of poroelasticity are presented. The solution of the
single-scattering problem for a spherical inhomogeneity is discussed in Section III and then
used in the formulation of a self-consistent effective medium approximation in Section IV.
The results are compared with general formulas of Brown and Korringa!! in Section V. We
find that the effective medium approximation gives explicit formulas for the coefficients

which are completely consistent with the results of Gassmann,'® of Biot and Willis,' and
of Brown and Korringa.!



II. Equations of Poroelasticity

Consider two porous media (i.e., host and inclusion) each of whose connected pore space
is saturated with a single-phase viscous fluid. The fraction of the total volume occupied
by the fluid is the void volume fraction or porosity ¢, which is assumed to be uniform
within each porous constituent but which may vary between the the host and inclusion.
The bulk modulus and density of the fluid are K; and p;, respectively, in the host. The
bulk and shear moduli of the (dry) porous frame for the host are K and u. Parameters for
the inclusion will be distinguished by adding a prime superscript. As usual we assume the
frame of the tnclusion is composed of a single constituent whose bulk and shear moduli
and density are K!,, u!,, and p',; however, we need to make no such assumption about the
host. The frame moduli may be measured directly or they may be estimated using one of
the many methods developed to estimate elastic constants of composites.

For long-wavelength disturbances (A > h, where k is a typical pore size) propagating
through such a porous medium, we define average values of the (local) displacements in
the solid and also in the saturating fluid. The average displacement vector for the solid
frame is @ while that for the pore fluids is @;. The average displacement of the fluid relative
to the frame is & = ¢(d; — @). For small strains, the frame dilatation is

e=e,+ey+e,=€’ i, (8)

where e,, e, ¢, are the Cartesian strain components. Similarly, the average fluid dilatation
is

er =V i (9)

(es also includes flow terms as well as dilatation) and the increment of fluid content is

defined by
¢c=V-d=d(e—es). (10)

With these definitions, Biot!-2 shows that the strain-energy functional for an isotropic,

linear medium is a quadratic function of the strain invariants'® I, = e, I, and of ¢ having
the form

2F = He? — 2Ce¢ + M¢? — 4ul, (11)
where
I =eye, + e,6,+ €6y — £(7:+73+73)’ (12)
and v.,7y,7. are the shear strain components.

With time dependence of the form ezp(—iwt), the Fourier transformed version of the
coupled wave equations of poroelasticity in the presence of dissipation take the form

pV2i+ (H — p)Ve— CV¢ + w?(pi + pyd) =0, (13)
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CVe— MV¢+ w(ppii+ qb) = 0, (14)
where
p=¢ps+(1-@)om (15)
and
g = prla/é+iF(E)n/rw). (18)

The kinematic viscosity of the liquid is n, the permeability of the porous frame is «, and
the dynamic viscosity factor is given (for our present choice of sign for the frequency
dependence) by

F(§) = 1€T(&)/I1+ 2T(8) fig), (16)
where
ro- S
and
£ = (wh?/n)}. (18)

The functions ber(¢) and bei(¢) are the real and imaginary parts of the Kelvin function. The
dynamic parameter k is a characteristic length generally associated with (and comparable
in magnitude to) the steady-flow hydraulic radius. The tortuosity « > 1 is a pure number

related to the frame inertia which has been measured recently® for porous glass bead
samples and has also been estimated theoretically.1¢!7

For the microscopically homogeneous inclusions being considered, the coefficients H’, C’,
and M’ are given!41%1° by Egs.(1)-(4) with

K!' =K} = K. (19)

To decouple the wave equations (13) and (14) into Helmholtz equations for three modes

of propagation, we note that the displacements @ and @ can be decomposed as
G=VT+Vxj o=Vyp+Vxy (20)

where T, are scalar potentials and §,x are vector potentials. Substituting (20) into Biot’s

equations (13) and (14), we find they are satisfied if two pairs of equations hold:

(VZ+E))F =0, x=-T.4, (21)
where T, = p;/q and

(V2 +k2)As =0. (22)
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In this notation, the subscripts +,—, and s refer respectively to the fast and slow compres-
sional waves and the shear wave. The wave vectors in (21) and (22) are defined by

k2 =w?(p—psTo)p (23)
and
KL = (w2/28)(b+ £ F (6~ £)? +4cd)}), (24)
where
b=pM —p;C, c=pyM ~qC, d=p;H - pC, f=qH— psC, (25)
with
A=MH-C? (26)

The linear combination of scalar potentials has been chosen to be

Ay =T T+ ¢, (27)
where
Pa = d/[(kst/0?)? — b = [(ksA/w?) - f)/c. (28)

With the identification (28), the decoupling is complete.

Since (21) and (22) are valid for any choice of coordinate system, they may be applied
to boundary value problems with arbitrary symmetry. Biot’s theory has therefore been
applied to the scattering of elastic waves from a spherical inhomogeneity in Ref. 20. The
results of that calculation will be summarized in the next section.
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III. Scattering from a Spherical Inhomogeneity

The full analysis of scattering from a spherical inhomogeneity in a fluid-saturated porous
medium is quite tedious. Fortunately, this work has already been done?® and we may
therefore merely quote the relevant results here.

Let the spherical inhomogeneity have radius a. For the moment, we will place no
restrictions on the properties of the inhomogeneous region. Thus the frame bulk and
shear moduli, the grain bulk modulus, the density, the porosity, and the permeability of a
solid inclusion may all be different from those of the host. Furthermore, the bulk modulus,
density, and viscosity of the fluid in an inhomogeneous region may also all be different from
those of the host fluid. Suppose now that a plane fast compressional wave is generated at

a free surface far from the inclusion. Then, if the incident fast compressional wave has the
form

€= 2—_A—0 ezpi(kyz — wt), (29)
lk.'.

the radial component of the scattered compressional wave contains both fast and slow
parts in the far field and is given by

uir = (tky) tezpi(kyr— wt)/k.,.r[B(gH - B$+) cosf — Bg+)(3 cos 20 + 1) /4] (30)
30
— (tk=)"tezpi(k_r — wt)/k_r[B((,_) - Bg_' cosf — Bé_)(3 cos 20 + 1)/4].

Then, with the definitions x4 = kya and «, = k,a and with no restrictions on the materials,
we find that

B(_) _ th'a_Ao [
° T 3M'(T, —T_)(K'+ ip)

(C - MT_)(K' + 3u)
(31)

—(C' - M'T_)(K + %,‘) +(C - MT_)(C' - M'T_) (% - %)]

and

B _ k3 4o [K'— K + (C -~ MT_)(C'/M' — C/M)]
o =

3 p(-)
N Xt i + (s B (52)

Expansions of the other coefficients in the small parameter ¢ = C/K have been given in the
reference.?° However, for the present application, only the first two coefficients are needed
and these happen to be the only ones known exactly at present. Of course, the full scattered
wave also contains transverse components of the compressional wave, relative fluid/solid
displacement, and mode converted shear waves. However, the scattering coefficients for
these contributions are linearly dependent on the the coefficients in (30) and therefore

contain no new information. It is sufficient then to base our discussion on the expression
(30).
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As an elementary check on our analysis, we should first consider the limit in which the
porosity ¢ vanishes. Then the fluid effects disappear from the equations and only the first
line of (30) survives. Furthermore, it is not difficult to check?® that the coefficients B{" for

n=0,1,2 reduce to the well-known results for scattering from a spherical elastic inclusion
in an infinite elastic medium.?* For example,

B{Y) = —ix3 Ao(K' — K)/(3K' + 4p) (33)

in this limit as expected.



IV. Microscopic Heterogeneity

The equations of poroelasticity presented in Section II have several limitations. For ex-
ample, these equations were derived with an explicit long-wavelength (low-frequency) as-
sumption and also with strong implicit assumptions of homogeneity and isotropy on the
macroscopic scale. Another restriction assumes that the pore fluid is uniform and that it
fully saturates the pore space. For the present application, we will assume that a single
fluid saturates all the pore space for host as well as inclusion and the scattering is caused
by microscopic heterogeneity in the solid properties.

Before deriving our main results, consider the problem of the porous frame without
a saturating fluid (or with a highly compressible saturating gas). Then the second line
of Eq.(30) disappears and only the fast wave terms contribute to the scattering. This
limit is formally equivalent to the problem of elastic wave scattering from a spherical
inclusion which has been treated in detail previously (see Ref. 21 and other references
therein). The effective medium approximation requires the weighted average of the single-
scattering results to vanish. This approach simulates the physical requirement that the
forward scattering should vanish at infinity if the impedance of the “effective medium” has
been well matched to that of the composite. The resulting condition is that the volume
weighted average of each of the B{*)’s for n = 0— 2 must vanish. Using the convention that
the effective constants for the composite porous medium are distinguished by an asterisk,
the formulas for the effective bulk (X*) and shear(u*) moduli for the dry porous frame of
a microscopically heterogeneous medium are

K* : e <K(f)1+ gu-> (34)
and
u T <#(:7:')l+ ) (35)
where
F=(u/6)(9K + 8u)/(K + 2p). (36)

The spatial(z) average is denoted by (). The remaining constant to be determined is the
corresponding effective density which is just given by the average density.2! For example,
Eq.(34) follows easily from the volume average of (33). Note that the equations for K* and
p* are coupled and therefore must be solved iteratively (i.e., self-consistently). Although
the form of the equations (34) and (35) is identical to that obtained for elastic composites,
it is important to recognize that the results can be quite different since the local constants
K(Z) and u(Z) appearing in the formulas are frame moduli of the constituent spheres of

dry porous material, not (necessarily) the moduli of the individual material grains. Of
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course, since the formula reduces correctly in the absence of porosity to the corresponding
result for the purely elastic limit, the user of Egs.(34) and (35) has some discretion about
conceptually lumping grains together to form a porous frame or treating them as isolated

elastic inclusions. For purposes of modelling complex aggregates of grains typical of earth
materials, this freedom of choice appears to be a real advantage.

Now we will restrict discussion to the very low frequency limit where

Ty =H/C (37)
and
I'_=0. (38)
With these restrictions, the relevant scattering coefficients reduce to

(-) _ l'fci CAQ
° T 3HM'(K'+

4
C(K'+ -u+do'C’
g")[ Hraeree) (39)
~-C'(K+ ;" + aC)],

and
x3 4o [K'— K + (o' — 0)C)

(+) _
Bo 3¢ K'+%u

+ (k4 /x-)°B{7). (40)

The resulting conditions on the effective constants are

(S + + o(@O(@) - O(@ (K" + 4u + e N

M@K + 1) “

and

K(2) - K* + (o(2) —o*)C*\ _
S (R e A

(42)

Note that (41) and (42) depend on the effective medium frame moduli K* and p* determined
by (34) and (35). The new constants which are determined by (41) and (42) are C* and

o*. The expressions for ¢* and +* are coupled as written but may be uncoupled after some
algebra. The final expressions for these constants are

o = /() * {Figr i) (43)
and
. o(Z) 1
" xmr o)/ (FEvee) “

Notice that (44) does not depend on c*; therefore, both constants have values determined
explicitly by the formulas. In contrast, the frame moduli K* and x* are determined only
implicitly by (34) and (35).
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V. Consistency

To check the consistency of the results of the previous section, the forms of (43) and (44)
must be compared to those of (2) and (4) as derived by Brown and Korringa.!* The key
point to check is that the forms of (43) and (44) allow the resulting effective bulk moduli

K; and K to be independent of the properties of the saturating fluid. Rearranging (4) for
the effective medium, we find that

K:=K*/(1-c") (45)

which clearly is independent of the fluid properties since o(z) and all the material moduli
appearing in (44) are independent of the fluid. Equating (43) and (2), we find

/Ky =o"(1-o")/K" + ¢ /K, - | Ml(f)) + (";(2)1(;#)2 ) (46)

Then, using (2) and (3), it is easy to see that the terms depending on K, in (46) all cancel.
The general form of this modulus is given by

$* /Ky =o0*(1-o*) /K" - [(%) + (";—((’;%i;‘—)z)] (47)

When the porous material is homogeneous on the microscopic scale, it is not difficult to
show that (45) and (47) reduce to the expected identities

K:=Kj=Kn. (48)

To check the predictions of this approximation, consider a porous medium composed
of two types of solids constituents with constants given by KY) = 7.0 GPa, pw = 5.0 GPa,
(1) = 0.1, KV) = 5.4 GPa, u!) = 3.9 GPa for the softer constituent and by K!? = 41.0 GPa,
1 =30.0 GPa, $® =03, K2 = 14.9 GPa, u? = 109 GPa for the harder constituent. The
effective frame moduli are first calculated by iteration using (34) and (35). Then the result
for o* is found using (44). Finally, (45) and (47) are used to compute K and K; and then
the results for these bulk moduli are plotted in Figure 1. We see that the two moduli vary
smoothly from one limiting value K to the other K{2) as the relative volume fraction of

the two porous constituents varies from zero to one. Note that K > K; for all values of

volume fraction except the end points where (48) applies. The observed variation is similar
to that found in various rigorous bounds on elastic constants of composites but there is no
reason to believe this observed similarity is more than coincidence. Notice that no pore

fluid need be specified in this calculation until we want to calculate the coefficient C* for
use in Biot’s equations.
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VI. Conclusions

For porous materials with more than one variety of solid component, a self-consistent
effective medium approximation has been constructed which gives explicit estimates of the
coefficients in Biot’s equations of poroelasticity. It has been shown that these formulas are
completely consistent with the known general results for these coefficients. In particular,
the estimates obtained for the moduli K, and K, are always independent of K; and also
reduce correctly to K, in the trivial limit of microscopic homogeneity. These results
are, of course, not exact but should give good estimates of these coefficients when the
assumption that the homogeneous porous components are spherically shaped is at least
approximately satisfied. The method used here can be generalized to other shapes of the
porous components but to do so requires the explicit solution of the scattering problem
for the shapes of interest. Some progress on this more difficult problem has been made??
but we will not pursue this line of thought further at the present time.
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Figure Caption

Figure 1. Comparison of the computed values of the solid bulk moduli K; and K; for a
porous medium composed of two types of solids constituents as the relative volume fraction
of the two porous constituents varies. The relevant constants are given by K\ = 7.0 GPq,
p) = 5.0 GPa, ¢V = 0.1, K1) = 5.4 GPa, p!) = 3.9 GPa for the softer constituent and by
K3 = 41.0 GPa, p? = 30.0 GPa, ¢ = 0.3, K = 14.9 GPa, u® = 10.9 GPa for the harder
constituent. The effective frame moduli are first calculated by iteration using (34) and

(35). Then result for o* is found using (44). Finally, (45) and (47) are used to compute
the curves.
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